MATH3210 - SPRING 2024 - SECTION 001

HOMEWORK 1 - SOLUTIONS

Problem 1. In the following, A is a set of real numbers. Negate the following statements:
(1) There exists $x \in A$ such that $x<0$.
(2) Every $x \in A$ is an integer.
(3) For every $x \in A$, there exists $y \in \mathbb{R}$ such that $y x=1$.
(4) For every $x, y \in A$, if $x \leq y$, then there exists $z \in A$ such that $x<z<y$.

Solution.

(1) For every $x \in A, x \geq 0$.
(2) There exists some $x \in A$ such that x is not an integer.
(3) There exists some $x \in A$ such that for every $y \in \mathbb{R}, y x \neq 1$.
(4) There exist $x, y \in A$ such that $x \leq y$, but for every $z \in A$, either $z \leq x$ or $y \leq z$.

Problem 2. Recall that a set $R \subset \mathbb{Q}$ is a Dedekind cut if it satisfies all 3 of the following properties:
(a) $R \neq \emptyset$.
(b) R is bounded above.
(c) For every $x \in R$ and $y \in \mathbb{Q}$, if $y<x$, then $y \in R$.
(d) For every $x \in R$, there exists $y \in R$ such that $y>x$.

Show that if R and S are Dedekind cuts, then $R+S=\{x+y: x \in R$ and $y \in S\}$ is also a Dedekind cut (ie, show properties (a)-(d) for the set $R+S$, assuming (a)-(d) for the sets R and S themselves).

Solution. Assume R and S are Dedekind cuts. To see that $R+S$ is a Dedekind cut, we need to show that it satisfies properties (a)-(d) for $R+S$.
(a) We need to show $R+S \neq \emptyset$. Since R and S are Dedekind cuts, they also satisfy (a). Hence there exists $x \in R$ and $y \in S$. By definition, we conclude that $x+y \in R+S$.
(b) We need to show that there exists a number M such that for every $z \in R+S, z \leq M$. Since R and S are Dedekind cuts, they have upper bounds. Let L_{1} denote an upper bound of R and L_{2} denote an upper bound of S. Define $M=L_{1}+L_{2}$. Then if $z \in R+S$, there exists $x \in R$ and $y \in S$ such that $z=x+y$. It follows that for any such z,

$$
z=x+y \leq L_{1}+L_{2}=M
$$

So M is an upper bound of $R+S$.
(c) We need to show property (c) for $R+S$. We will rename the variables for convenience. That is, we will show that if $z \in R+S$, and $w \in \mathbb{Q}$ satisfies $w<z$, then $w \in R+S$.

Let $z \in R+S$, and $w \in \mathbb{Q}$ satisfy $w<z$. By definition, $z=x+y$ for some $x \in R$ and $y \in S$. Then $w-y<z-y=x$. By property (c) for R, it follows that $w-y \in R$. But then since $y \in S$, we conclude that $w=(w-y)+y \in R+S$. This concludes the proof.
(d) We need to show property (d) for $R+S$. We will again rename variables for convenience. That is, we will show that for every $z \in R+S$, there exists $w \in R+S$ such that $w>z$.

Let $z \in R+S$, so that $z=x+y$ for some $x \in R$ and $y \in S$. Since R and S satisfy property (d), we can find elements $a \in R$ and $b \in S$ such that $a>x$ and $b>y$. Therefore, if $w=a+b$, $w \in R+S$, and $w=a+b>x+y=z$.

Problem 3. Prove that if $x, y \in \mathbb{R}$ and $x<y$, then there exists some $q \in \mathbb{Q}$ such that $x<q<y$. You may use the following fact: if $a, b \in \mathbb{R}$ and $b-a>1$, then there exists $m \in \mathbb{Z}$ such that $a<m<b$.

Solution. Suppose that $x, y \in R$ satisfy $x<y$. Then $y-x>0$. By the Archimedian property, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<y-x$, and hence

$$
1<n(y-x)=n y-n x
$$

By the fact provided, there exists $m \in \mathbb{Z}$ such that $n x<m<n y$. Dividing the chain of inequalities by n yields

$$
x<\frac{m}{n}<y
$$

Since $m, n \in \mathbb{Z}, q=\frac{m}{n} \in \mathbb{Q}$. and we have shown the claim.
Problem 4. Let S_{1}, S_{2}, \ldots be bounded subsets of \mathbb{R}, and $x_{n}=\sup S_{n}$. Show that if $S=\bigcup_{n \in \mathbb{N}} S_{n}$ is also bounded above, then

$$
\sup S=\sup \left\{x_{n}: x \in \mathbb{N}\right\}
$$

Solution. Let $y=\sup S$. We will show that $y=\sup \left\{x_{n}: x \in \mathbb{N}\right\}$. To do so, we must show that y is an upper bound of the set $\left\{x_{m}: x \in \mathbb{N}\right\}$, and that if $z<y$, then there exists an element of the set greater than z. First, we show it is an upper bound. Since $y=\sup S, y$ is an upper bound of S. Fix an arbitrary $n \in \mathbb{N}$, and let $w \in S_{n}$. Since $S_{n} \subset S, w \in S$. Since y is an upper bound of $S, w \leq y$. Hence y is an upper bound of S_{n} for every n. Since x_{n} is the least upper bound of $S_{n}, x_{n} \leq y$. Therefore we have shown that for every $n, x_{n} \leq y$, and y is an upper bound of $\left\{x_{n}: n \in \mathbb{N}\right\}$.

We now show that if $w<y . w$ is not an upper bound of $\left\{x_{n}: n \in \mathbb{N}\right\}$. Since $y=\sup S$, and $w<y, w$ is not an upper bound of S. Then there exists some $z \in S$ such that $z>w$. Since S is an infinite union, there must exist some n such that $z \in S_{n}$. Therefore, w is not an upper bound of S_{n}. Since x_{n} is an upper bound of $S_{n}, w<x_{n}$. This implies that w cannot be an upper bound of $\left\{x_{n}: n \in \mathbb{N}\right\}$.

